

PHYSIQUE / Unité :2 TRANSFORMATIONS NUCLEAIRES

Exrecices Décroissance radioactive

EXERCICE 1

La glande thyroïde produit des hormones essentielles à différentes fonctions de l'organisme à partir de l'iode alimentaire. Pour vérifier la forme ou le fonctionnement de cette glande, on procède à une scintigraphie thyroïdienne en utilisant les isotopes $^{131}_{53}I$ ou $^{123}_{53}I$ de l'iode. L'iode 131 (Z = 53) est émetteur β^- et sa demi-vie t $_{1/2}$ vaut 8,1 jours. Le 25 août 2007, un centre hospitalier reçoit un colis d'iode radioactif d'activité A = 2,6.10 9 Bq

- 1. Ecrire l'équation de la désintégration
- 2. Quels sont les rayonnements émis par l'iode radioactif dans le corps humain?
- 3. Tracer la courbe représentative de l'activité A(t) pour $0 \le t \le 60$ jours après la réception
- 4. Calculer la masse d'iode radioactif contenu dans le colis à la date du 25 août 2007
- **5.** En utilisant la courbe tracée précédemment, déterminer l'activité du colis d'iode non encore utilisé 30 jours après réception ; retrouver la valeur exacte par le calcul.
- **6.** Lors d'un examen médical, on injecte à un patient une quantité d'iode radioactif d'activité voisine de 4.10⁶ Bq. Combien d'injections peut-on réaliser à partir de l'échantillon non encore utilisé, le 25 septembre 2007 ?
- **7.** Quelle activité, due à l'iode 131, reste-t 'il dans le corps du patient un an après l'injection ? que peut-on conclure du résultat observé ?
- **8.** La conclusion de la question précédente serait-elle identique si le traceur utilisé avait une demi-vie égale à 90 jour? Données : masse molaire atomique M_I de l'iode : M_I = 131 g/mol ; constante d'Avogadro = 6,02.10²³mol⁻¹ ; extrait de la classification périodique : tellure $_{52}$ Te / iode $_{53}$ I / xénon $_{54}$ Xe / Césium $_{55}$ Cs

EXERCICE 2

La scintigraphie est une technique d'investigation médicale qui permet l'observation de la glande thyroïde. Un patient ingère pour cette observation une masse m = 1,31 ng de l'isotope $^{131}_{53}I$ de l'iode qui est radioactif de type β^- ($t_{1/2}=8,1$) jours = 7.10^5 s)

- 1. Ecrire l'équation de la réaction de désintégration en justifiant.
- 2. Déterminer le nombre d'atomes radioactifs dans la dose ingérée.
- 3. On note N0 le nombre de noyaux radioactifs à la date t=0. On note N le nombre de noyaux radioactifs à la date t. Etablir la relation entre la constante radioactive l et le temps de demi-vie t_{1/2}, en précisant la signification de la demi-vie.
- 4. Définir l'activité d'un échantillon radioactif et établir la relation entre l'activité et N.
- **5.** Calculer l'activité initiale de la dose ingérée.
- 6. Calculer le temps au bout duquel l'activité résiduelle est égale à 1,5 % de l'activité initiale.

Données : M (iode 131) = 131 g/mol ; $N_A = 6.10^{23} \text{ mol}^{-1}$; $_{51}\text{Sb}$; $_{52}\text{Te}$; $_{54}\text{Xe}$; $_{55}\text{Cs}$; $_{56}\text{Ba}$.

EXERCICE 3

- le Thorium $^{230}_{90}Th$ est utilisé dans la datation des coraux et concrétions carbonatées ainsi que dans la datation des sédiments marins et lacustres.
- 1. L'Uranium 238 $^{238}_{92}U$: se désintègre en Thorium 230 $^{230}_{90}Th$: en émettant x particules α et y particules β -.
- 1.1 Ecrire l'équation de cette transformation nucléaire en déterminant les valeurs de x et y
- 1.2 On symbolise par λ : la constante radioactive de thorium 230

Et par λ ': la constante radioactive de l'Uranium 238

Montrer que le rapport $\frac{N({}^{230}_{90}Th)}{N({}^{238}_{92}U)}$: reste constant lorsque les deux échantillons de

 $^{238}_{92}U$ et de $^{230}_{90}Th$ ont la même activité radioactive à la date t, $N(^{230}_{90}Th)$ et $N(^{238}_{92}U)$ sont respectivement le nombre des noyaux de l'uranium et de Thorium à la même date t.

- 2. Le Thorium 230 se désintègre en Randium $^{226}_{88}Ra$: ,écrire l'équation de cette transformation nucléaire en précisant sa nature.
- 3. On note par N(t) le nombre des noyaux de Thorium 230 présent dans un échantillon de corail à la date t et N_0 le nombre de ces noyaux à la date t=0. La courbe ci jointe représente les variations du rapport N(t)/N0 en fonction du temps t.

N(t)
N₀
0,8
0,4

Montrer que la demi – vie de Tritium 230 est : $t_{1/2} = 7,5.10^4$ ans.

4. La courbe ci – jointe est utilisée pour dater un échantillon d'un sédiment marin de forme cylindrique d'hauteur h prélevé dans le plancher océanique.

Les résultats d'analyse d'une masse m prélevé dans la base supérieure de cet échantillon montre qu'il contient \mathbf{m}_s =20 $\mu \mathbf{g}$ de $^{230}_{90}Th$, par contre la même masse m prélevé dans la partie inférieure du même échantillon montre qu'il contient uniquement \mathbf{m}_p =1,2 $\mu \mathbf{g}$ de $^{230}_{90}Th$.

Nous considérons qu'à t = 0, $\mathbf{m_0} = \mathbf{m_{s}}$. Calculer l'âge de la partie prélevé dans la base inférieure de l'échantillon, en ans