

Niveau : 1ére BAC Physique Chimie

# serie d'exercices Rotation d'un solide autour d'un axe fixe

Année scolaire

#### **EXERCICE 1**

On attache, grâce à un fil inextensible, un mobile autoporteur à un point fixe O. On lance ce mobile sur la table à coussin d'air horizontale pour avoir un mouvement de rotation du mobile autour du point O et on enregistre la position du point M confondue avec le centre d'inertie de l'autoporteur à des intervalles de temps successifs et égaux  $\tau$ =20ms. On obtient l'enregistrement suivant avec une échelle réelle :

- 1-Quelle est la nature de la trajectoire mobile M?
- 2- Déterminer la vitesse instantanée de point M en M<sub>2</sub>, et M<sub>6</sub>.
- 3- Représenter le vecteur vitesse  $\overrightarrow{v_2}$  et  $\overrightarrow{v_6}$  du mobile au point  $M_2$  et  $M_6$ .  $M_8$
- 3- Calculer la vitesse angulaire du mobile aux points M<sub>5</sub>, M<sub>8</sub>, Préciser l'unité.
- 4- Quelle est la nature de mouvement de M ?déduire la nature de mouvement de corps solide.
- 5- Calculer la valeur du rayon R de la trajectoire du point M.
- 6- Calculer la fréquence de ce mobile autoporteur.
- 7-Compléter le tableau suivant tel que :

 $M_1$  origine d'angle  $\theta_0=0$  et  $M_2$  origine de temps t=0

| $M_1$ origine d'angle $\theta_0$ =0 et $M_2$ origine de temps t=0 |                |                |                |                  |       |                |
|-------------------------------------------------------------------|----------------|----------------|----------------|------------------|-------|----------------|
| Position de M                                                     | $\mathbf{M}_2$ | $\mathbf{M}_3$ | $\mathbf{M}_4$ | $\mathbf{M}_{5}$ | $M_6$ | $\mathbf{M}_7$ |
| $t_i(s)$                                                          |                |                |                |                  |       |                |
| $\theta_i(rad)$                                                   |                |                |                |                  |       |                |

- 8- En utilisant une échelle convenable, tracer la courbe  $\theta$ =f(t).
- 9- En déduire les équations horaires du mouvement de point M.
- 10- pendant 2 min de rotation, calculer le nombre des tours effectué par le mobile autoporteur. En déduire la distance parcours par le mobile

#### **EXERCICE 2**

Un mobile M supposer ponctuelle est en mouvement circulaire avec une fréquence de 5Hz sur une trajectoire de diamètre D=0,4 m.

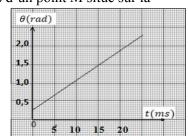
- 1-Déterminer La vitesse angulaire ω du mobile M.
- 2- la vitesse linaire du mobile.
- 3-Sachant que le mobile se déplace dans le sens positif et qu'à l'instant  $t_0 = 0$  s, il a déjà effectué 0,25 de tour, Déterminer l'équation horaire de son mouvement.
- 4- déterminer l'angle parcourir par le mobile entre les instants  $t_0 = 0$  s et  $t_1 = 3$  s.

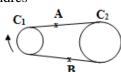
# **EXERCICE 3**

Un cylindre de rayon r=30cm, tourne autour d'un axe fixe à une vitesse angulaire constante  $\omega$ =33,3 tr/min.

- 1- Qu'elle est la nature de mouvement d'un point de périphérique du disque dans le référentiel terrestre?
- 2- Déterminer la vitesse angulaire du disque en rad/s.
- 3- Calculer la période et la fréquence de ce disque
- **4-** Calculer la vitesse rectiligne d'un point de la périphérie du disque.
- 5- Calculer la distance parcourue par le même point pendant 5 min.
- 6- Calculer le nombre des tours effectué par le cylindre pendant 5 min.

## **EXERCICE 4**


Le document ci-contre représente la variation de l'abscisse angulaire  $\theta$  en fonction du temps d'un point M situé sur la circonférence d'un disque en rotation autour de son axe de symétrie  $\Delta$ .


- 1- Quelle est la nature du mouvement ?
- 2- Déterminer les valeurs de la vitesse angulaire du point M à l'instant t.
- 3- Ecrire l'équation horaire du mouvement du point M.
- 4-Calculer la période et la fréquence du point M.
- 5-Sachant que le diamètre de la trajectoire circulaire du point M est d=30cm, déterminer l'expression de l'abscisse curviligne en fonction du temps s(t).
- 6- Déterminer l'abscisse curviligne du point M à l'instant t=15s

### EXERCICE 5

une courroie est enroulée sur deux cylindres  $C_1$  et  $C_2$  d'axes parallèles fixes, de diamètres respectifs  $D_1=1m$ ,  $D_2=1,5m$ . la vitesse angulaire  $\omega_1$  du cylindre  $C_1$  est de 30 tr.min<sup>-1</sup> et la courroie ne glisse pas sur les deux cylindres

- 1- Déterminer les vitesses V<sub>A</sub> et V<sub>B</sub> des points A et B de la courroie.
- 2- Etablir la relation qui relie la vitesse angulaire  $\omega_1$  et  $\omega_2$  vitesse angulaire du cylindre  $C_2$  et donner la valeur de  $\omega_2$ .
- 3-Combien de tours effectue le cylindre C<sub>2</sub> quand le cylindre C<sub>1</sub> effectue 30 tours.



