

يسمح باستعمال الآلة الحاسبة العلمية غبر القابلة للبرمجة

يتضمن اللوضوع أربعة تمارين : تمرين في الكيمياء و ثلاثة تمارين في الفيزياء

الكيمياء:(7 نقط)

- دراسة محلول ماني لحمض الإيثنانويك و تصنيع إستر.

ـ التحضير الصناعي لغاز ثناثي الكلور.

- دراسة ثنائي القطب RC واللارة المثالية LC .

الفيزياء: (13 نقطة)
ـ الموجات الضونية.

- حركة كرة مضرب في مجال الثقالة المنظظم.
" = الميكاتيك (5,5 نقط) :
- دراسة حركة نواس وازن.

الجزء الأول : دراسة محنول ماني لحمض الإيثّانويك و تصنيع إستر
يعتبر النعناع من النبتات التي نتميز بمنافع صحية عديدة ومعروفة منذ قرون. بحتوي زيت أحد أنواعه على إيثانوات
 . $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ الصيغة الاجمالية

1- دراسة محثول ماني لحمض الإيثانويك نتوفر على محلول ماني . القيمة $\sigma=1,6.10^{-2} \mathrm{S.m}^{-1}$ معطيات :

$$
\text { - تمت جميع القياسات عند درجة المرارة } 25^{\circ} \mathrm{C} \text {. }
$$

- تعبير الموصلية

$$
\begin{aligned}
\lambda_{\mathrm{H}_{3} \mathrm{O}^{+}} & =3,49 \cdot 10^{-2} \mathrm{~S} \cdot \mathrm{~m}^{2} \cdot \mathrm{~mol}^{-1}- \\
\lambda_{\mathrm{CH}_{3} \mathrm{COO}^{-}} & =4,09 \cdot 10^{-3} \mathrm{S.m}^{2} \cdot \mathrm{~mol}^{-1}-
\end{aligned}
$$

- نههل تأَّبر الأيونات HO ${ }^{-}$على موصلية المحلول.

1-1-1 اكتب المعادلة المنمذجة التفاعل حمض الإيثانويك مع الماء.
 1-1-2- احسب نسبة التقدم النهانئي للتفاعن .
1-4- أوجد تعبير 4
2- تصنيع إستر
 حمض الكبريتيك المركز، فنحصل على خليط حجمه حني نوزع الخليط بأحجام متساوية في أنابيب اختبار ونحكم سدها ونضعها في آن واحد في حمام هريم درجةّ حرارته ونتُغل الميقت. نخرج الأنابيب من الحمام تباعا بعد مدد زمنية منتظمة ونضع كل أنبوبب في الماء المثلج. نعاير الحمض المتبقي في كل . $\mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{HO}_{(\mathrm{aq})}^{-}$أنبوب بوأسطة محلول ماتي لنيدروكسيد الصوديون مكنت النتّاتج المحصل عليها من خط المنحنى ${ }^{\text {n }}$ الممثّل لكمية هادة حمض الإيثانويك المَبَقي في الحوجلة بدلالة اللزمن . يمثل المستقيم (T) المماس للمنحنى عند اللحظة H (الشكل صفحة $3 / 8$) 2-1-1 ما دور كل من حمض الكبريتيك والماء المثلج في هذا اللتفاعل ؟ 2-2-2-2 اكتب المعادلة الكيميائية المنمذجة للثفاعلع بين حمض الإثانويك المتّبقي و محنول هيدروكسيد الصـوديوم. 2-3-2- التثر الجواب الصحيح من بين الاهتتراحات التاليـة:
أ- يؤدي الرفع من درجة الحرارة إلمى تزايد مردود تير الفاعل الاسترة

ج- نتعلق ثابابتة اللتوازن بالتركيب البدئي اللخليط التفاعلي.
دـ الأسترة تنفاعل سريع وكلي .

$\frac{1}{8}$	RS 30	

2-4- اكتب المعادلة الكيمِياتية المنمذجة لتفاعل الاسترة. (نرمز للمانثؤل ب R-OH). . t=0 قيمة السرعة الحجمية اللثفاعل عند اللحظة mol.L. ${ }^{-1} \cdot$ min $^{-1}$ حدد بالوحدة

2-6-2 حدد قيمة t/2 زمن نصف التفاعل .
2-7- احسب مردود تفاعل الأسترة .
 و حدد، عند اللتوازن ،كمية مادة كل من الإستر المتكون وحمض الإيثانويك المتبقي في الخليط .

الجزء الثانتي: التحضير الصناعي لغاز ثناني الكلور يستعمل غاز ثناني الكلور لتحضير مجموعة من المواد الكيميانية، و يمكن إنتاجه صناعيا بالتحليل الكهرباني لمحلول ماني مركز لكلورور الصوديوم ${ }^{\text {الصـيو }}$ معطيات :
Vm $=24$ L.mol $^{-1}$: الحجم المولي -
1F = 9, 65.10 $\mathrm{C}^{4} \mathrm{~mol}^{-1}$: ثابثة فرادي $\mathrm{O}_{2(\mathrm{~g})} / \mathrm{H}_{2} \mathrm{O}_{(\ell)} \cdot \mathrm{H}_{2} \mathrm{O}_{(\ell)} / \mathrm{H}_{2(\mathrm{~g})} \cdot \mathrm{Cl}_{2(\mathrm{~g})} / \mathrm{Cl}_{(\mathrm{aq})}^{-}$: ox/red المزدوجات تكتب المعادلة الإجمالية المنمذجة للتحول الحاصل كما يلي : $2 \mathrm{H}_{2} \mathrm{O}_{(\ell)}+2\left(\mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}^{-}\right) \longrightarrow \mathrm{H}_{2(\mathrm{~g})}+2\left(\mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{HO}_{(\mathrm{aq})}^{-}\right)+\mathrm{Cl}_{2(\mathrm{~g})}$

1- اكتب معادلة التفاعل الحاصل عند الكاتود واشرح كيف يتغير pH المحلول بجوارها. 2- أتشتغل خلية لهذا التحاليل الكهرباني بتيار كهرباني شدته ثابتة أوجد حجم غاز ثناتي الكلور الناتج خلال المدة $\Delta t=10 h$.
 النكساره n بالنسبة لهذا الإشعاع. طول هوجة هذا الإشعاع في الهواء هو

مemيت :

$$
\begin{aligned}
& \text { - سرعة انتشّار الضوء في الهواء: } \\
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ! } 1 \mathrm{MeV}=1,6.10^{-13} \mathrm{~J} \text { - } \\
& \text {. } \lambda_{0}=633 \mathrm{~nm}-
\end{aligned}
$$

1- الختر الجواب الصحيح من بين الالقتراحات التالية:
أـ للضوء نفس سرعة الانتشار في جميع الأوساط الشفافة.
ب- يتغير تردد موجة ضونئية أحادية اللون عند انتقالها من وسط شُفافـ إلى آخر.
ج- لا يتعلق طول الموجة لموجة ضوئية بطبيعة وسط الانتشار . دـ يتُعلق معامل انكسبار وسط شُفافت بطول الموجة للضوء الأحادي اللون الذي يجتازه. هـ الموجات فوق الصوتية موجات كهرمخنطيسية.

. $\Delta \mathrm{E}=\mathrm{E}_{2}-\mathrm{E}_{1}$ تغير الطّاقد MeV حدر بالوحدة

3-1- هل ينتمي هذا الإشعاع إلى مجال الطيف المرني؟ علل جوابك. 3-2- احسب التزدد v لهذا الإشعاع .
3-3- حدد بالنسبة لهذا الإشعاع، في الموشور، سرعة الانتشار وطول الموجةّخ .
3-4- نعوض منبع اللازر بمنبع للضوء الأبيض. ماذا نلاحظ على الشاشة (E)بعد اجتيّاز هذا الضوء للموشور؟؟ ما هي

الكهرباء $(5,25$ نتط
LC لرتبة توتر والتنببنبات غيرالمخددة في دارة RC يهدف هذا التمرين إلى دراسة كل من استجابة ثنائي القطب

 يمكن نظام مسلك معلوماتي ملانم من خط المنحنيين (Г1)و (Г2) (الشكل 2) الممثلين للتوترين المحصل عليهما باستعمال المدخلين Y و

1-2- أثبت المعادلة التفاضلية التي يحقتها الثوتر (t (t 1-1- بين أن تُعبير شدة التيار الكهربائي مباشرة بعد وضع قاطع التيار K في الموضع (1) هو

1-4- اعتمادا على المنحنيين :
r-1-4-1 حدد قيمة المقاومة
. $\mathrm{C}_{0}=5 \mu \mathrm{~F}$ بين أ-4-2
2- دراسة الدارة المثيلية LC
بعد حصون النظام الأنم، نؤرجح عند لحظة نعتبر ها أصلا جديدا للتواريخ (t=0) قاطع التيار K إلى الموضع (2) فنحصل على دارة LC.

2-1- أثبت المعادلة التفاضلية النتي تُحقهها شدة التتيار (i(t).

2-2-2 يكتب حل المعالدلة التفاضلية على الشكل و ب الطور عند أصل اللتواريخ و I القيمة القصوى الشدة التيار. أوجد قيمة ب. 2-3- اعتمادا على تعبير القدرة الكهرباتية، أثبت تعبير الطاقة
(المخزونة في المكثt بدلالة الشحنة E (t)

Ee (t) 2-4 يمثّل منحنى الشكل 3 تطور الطاقة الكهربانية
المخزونة في المكثف بدلالة الزمن t. 2-4-1 احسب
.2-4-2-2 بالاعتماد على الدراسة الطاقية، أوجد تَيمة

RLC التنبّبات القسرية في دارة متوالية II
نتجز الدارة الكهر باينية الممثلة في الشكل 4 والمكوَنة من : ؛ $u_{A B}(t)=U_{m} \cdot \cos (2 . \pi . N . t)$ يزود الدارة بتوتر جييي GBF مولدي -

؛ R=20 Ω - موصل أومي مقاومته

- مكثف سعته C قابلة للضبط ؛ - وشيعة معامل تحريضنها L ومقاومنها
- فولطمتر

1- نضبط السعة C للمكثف على القيمة C1 ونعاين بواسطة كاشف Y بين مربطي الموصل الأومي عند المدخل UR (t)
 في الشُكل 5 .
. $u_{R}(t)$ (1-1

1-2-2 حدد قَيمة الممانعة Z للارارة.
1-3- اكتب التعبير العددي لشدة التيار i(t) المـار في الدارة.
اللمكثف C C على القيمة C2 $=10 \mu \mathrm{~F}$ فيشير الفولطمتر إلى القيمة

$$
. U_{D B}=3 V
$$

2-2-2 حدد قيمة

الجزءان الأول و الثاني مستقّلان

الميكانيك (5,5 نقط)
الجزء الأول : حركة كرة مضرب في هجال الثقلـة المنتظم
من بين القواعد المعتمدة في رياضة كرة المضرب فردي رجال، ممارستها من طرف لاعبين يوجد الدرهما في المنطقة (أ) و الأخر في المنطةة (ب) تفصل بينهـا شبكة. طول كل هنطقة هو L . يسعى كل لاعب أثناء المباراة إلى إسقاط الكرة ندرس حركة مركز القصور G لكرة مضرب في المعلم (O, يحاولي اللاعب في المنطقة (أ) أن يمررالكرة فوق منافسه المتواجد على مسافة d من الشّبكة في المنطقة (ب). لهذا
 المستوى الأفتي. توجد النقطة O على مسافة D من الشبكة وعلى ارتفاع h من سطح الأرض (الشُكل أسفله).

المعطيات :

$$
\begin{aligned}
& \text { - نهمل الاحتكاكات و أبعاد الكرة و نأخذ } \\
& \mathrm{L}=12 \mathrm{~m} \cdot \mathrm{~h}=0,7 \mathrm{~m} \text { ، } \mathrm{D}=13 \mathrm{~m} \text { ، } \mathrm{d}=1 \mathrm{~m} \text { - } \\
& \text {. } \alpha=45^{\circ}, \quad V_{0}=13 \mathrm{~m} \cdot \mathrm{~s}^{-1}-
\end{aligned}
$$

. 1
2- علما أن اللاعب المتواجد في المنطقة (ب) يمسك بمضربه فير وضر وضع رأسي حيث يتواجد الطرف الأعلى للمضرب على
الارتفاع H=3m من سطح الأرض و في مستوى الحركة. هل يتمكن الللاعب، في هذه الوضعية، من اعتراض الكرة ؟
3- بين أن الكرة تسقط في المنطقة (ب)

 لـعزم قَصور النواس الوازن بالنسبة للمحور (ه) و ب L للمسافةَ الفاصلة بين G و المحور (ه) .

لِحداث خمود، نسنَعمل صفائح خفيفة كتّها مهملة ومساحاتْها كختلفة.
المعطيات : - شُدهُ النقالة : $\mathrm{g}=9,8 \mathrm{~m} . \mathrm{s}^{-2}$.

$$
\begin{aligned}
& \cdot \mathrm{m}=400 \mathrm{~g}- \\
& \cdot \mathrm{L}=50 \mathrm{~cm}
\end{aligned}
$$

 بالنسبة لكل تجربة، نزيح النواس عن موض .t=0 في $\theta_{\text {m }}$ نمعلم-عند كل لحظة موضع النواس الوازن بالأفصول الز اوي θ (الشكل 1) . مكنت اللراسة النجريبية و معالجة المعطيات بواسطة برنم ملانم من الحصول على المنى المنحنيات الممثلة في الشكل 2 و النتي تمثل تطور الأفصول الزاوي θ بدلالة الزمن .
 1-2 أوجد تعبير النور الخاص لالمعادلة التنفاضلية

J ا-1-4 حدد قيمة
 . تو ازنـه المسنتقر 2- حالة اللظام شبه الدوري

ASSASSI

