سلسلة تمارين الاسترة و الحلمأة

تفاعل حمض الإيثانويك مع كحول بوتان-1-أول لإعطاء استر E يستعمل في بعض المشروبات السكرية لِتحضير المركب E ندخل في حوجلة 33g من حمض الإيثانويك و 37g من الكحول السابق ثم نضيف قطرات من حمض الكبريتيك المركز ونسخن الخليط بالإرتداد لمدة ساعة ، ثم نوقف التفاعل . نعطى M(O)=16g/mol ; M(C)=12g/mol ; M(H)=1g/mol.

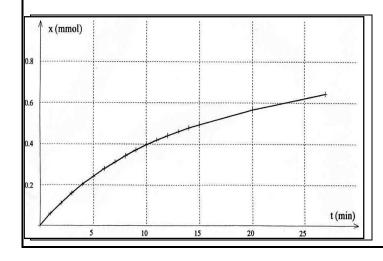
- 1- أكتب معادلة التفاعل بين الحمض والكحول باستعمال الصيغ نصف المنشورة .أعط اسم الإستر الناتج
 - 2- ما مميزات هذا التفاعل؟ واذكر فائدة التسخين بالإرتداد
 - 3- أحسب كمية مادة كل من الحمض والكحول في الحالة البدئية وأنجز الجدول الوصفي
- 4- نحصل عند نهاية التفاعل على 40,6g من الإستر أوجد كمية مادة الإستر المتكون ةاستنتج مردود التفاعل
 - 5- استنتج تركيب الخليط عند نهاية التسخين و أحسب ثابتة التوازن K

1 إيثانوات الإيثيل:إيثانوات الإيثيل (C4H8O2) سائل عديم اللون له الصيغة النصف المنشورة التالية: CH3-COO-CH2-CH3

- 1.1 حدد المجموعة الوظيفية للمركب وبينها على الصيغة.
 - 2.1 إلى أي مجموعة ينتمى اليها إيثانوات الإيثيل؟
- 2. تصبن إيثانوات الإيثيل: و هو التفاعل بين إيثانوات الإيثيل و محلول للصودا مثلا.
- $C_4H_8O_{2(aq)} + Na^+_{(aq)} + HO^-_{(aq)} \leftrightarrow Na^+_{(aq)} + A^-_{(aq)} + B_{(aq)}$ ننمذج هذا التحول حسب المعادلة التالية:
 - 1.2 أكتب الصيغة نصف منشورة للنوع اليميائي \hat{A}^{-} . و أعطُ اسمه.
 - 2.2 هل التفاعل تام أم محدود؟
 - 3 الدر اسة التجريبية لحركية تفاعل التصبن بقياس الموصلية.

عند لحظة t=0 ، نسكب إيثانوات الإيثيل في كأس يحتوي على محلول الصودا. فنحصل على حجم $V=100.0~\mathrm{mL}$ من المحلول تركيزه عند درجة حرارة 0° 3. نغمر في الخليط مجس مقياس الموصلية في الخليط التفاعلي فنحصل على النتائج التالية $C_0 = 10^{-2}$ mol/L

	<u> </u>	٠	<u> </u>	٠, ٠	<u> </u>	<u> </u>	10 11101, 2
t(min)	0	5	9	1	20	27	∞
σ (S/m)	0.250	0.210	0.192	0.178	0.16	0.148	0.091


- x(t) تقدم التفاعل عند اللحظة t. انشئ جدول تقدم التفاعل.
 - 2.3 المو صلية.
- 1.2.3 ما هي الانواع الكيميائية المسؤولة على الموصلية في الوسط التفاعلي؟
 - 2.2.3 لماذا موصلية للمحلول تتناقص؟

 $\lambda(\text{Na}^+) = 5.0 \times 10^{-3}$ $\lambda(OH^{-}) = 2.0 \times 10^{-2}$: $\lambda(A^{-}) = 4.1 \times 10^{-3}$: $S.m^{2}.mol^{-1} + \lambda$ عطيات: الموصلية المولية الايونية $\lambda(OH^{-}) = 2.0 \times 10^{-2}$ C_0 ; V ; X(t) ; λ عبر عن $\sigma(t)$ الموصلية للمحلول بدلالة $\sigma(t)$

- $\sigma_{\infty} = (\lambda_{Na^+} + \lambda_{A^-}).C_0$ و عند اللحظة t=0 هو t=0 هو t=0 هو t=0 عند اللحظة النهائية عند اللحظة والموصلية والم
 - . $X(t) = C_0.V \frac{\sigma_0 \sigma(t)}{\sigma_0 \sigma_\infty}$ میک شکل یتب علی شکل یتب علی آن تعبیر التقدم یتب علی شکل . $X(t) = C_0.V \frac{\sigma_0 \sigma(t)}{\sigma_0 \sigma_\infty}$
 - 3.3 الدراسة الحركية:

من خلال العلاقة الواردة في 5.2.3 تمكننا من حساب قيم التقدم X بدلالة الزمن و من تم ثمتل المنحنى تغيرات التقدم بدلالة الزمن:

- 1.3.3 أعط تعبير السرعة الحجمية للتفاعل مع تحديد الوحدة.
- 2.3.3 اشرح الطريقة التي تمكننا من تعيين قيمة السرعة الحجمية للتفاعل مبيانيا ثم احسب قيمتها عند اللحظة t=15min
- 3.3.3 كيف تتطور هذه السرعة خلال التحول الكيميائي. و ما هو العامل الحركي المؤثر ؟
 - 4.3.3 أحسب التقدم الاقصى .
 - 5.3.3 عرف زمن نصف التفاعل ثم حدد قيمته مبيانيا.
 - 6.3.3 نجري نفس التحول المدروس و لكن عند الدرجة 20°C أرسم
 - كيفيا على نفس المبيان السابق تغيرات التقدم X ، مع التعليل \cdot

البوتيرين

C₃H₇-C-O-CH₂

С3H7-С-О-СН

C₃H₇-C-O-CH₂

نسخين بالإرتداد. ، في حوجلة خلال ساعتين ، كتلة m =4g من ثلاثي الغليسريد (البوتيرين: مادة عضوية توجد في الزبدة) بمحلول الصودا (هيدروكسيد الصوديوم) حجمه $Vb=50 \mathrm{mL}$ وتركيزه $C_b=1 \mathrm{mol.L}^{-1}$ نعتبر التفاعل التالي كليا:

 $R-COO-CH_2-CH(OOC-R)-CH_2-OOC-R+3(Na^++HO^-)\rightarrow 3(R-COO^-+Na^+)+(CH_2OH-CH(OH)-CH_2OH^-+Na^-)$

نبرد المجموعة التفاعلية ثم نعاير كمية هيدروكسيد الصوديوم المتبقية في الحوجلة نحصل

على التكافؤ عند إضافة حجم V_A =40.5mL من حمض الكلوريدريك تركيزه V_A =40.5mL على التكافؤ

- 1- حدد الكتلة المولية لثلاثي الغليسريد البوتيرين
 - 2- ما اسم هذا التحول
- 3- أعط الصيغ نصف المنشوة للغليسرول وحمض البوتيريك
- 4- بعد التبريد ، نضع الخليط التفاعلي في محلول كلورور الصوديوم المشع ما دور هذه العملية وما إسمها . 5- في الحقيقة ، مردود تفاعل التصبن هو %85 ،أحسب بkg كتلة الغليسرول المحصل عليها بتصبن 4.1طن من ثلاثي الغليسريد .