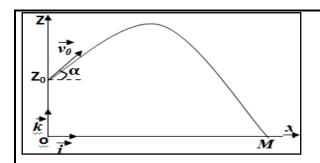

سلسلة تمارين الحركات المستوية

السنة الدراسية ـ المستوى :2émé BAC

في جميع التمارين نهمل الاحتكاك مع الهواء ودافعة أر خميدس نعطي g = 10m.s⁻². و نهتم بالدر اسة بعد القدف

اعتمادا على الفيلم المسجل لعملية الرمى و لأجل معرفة قيمة السرعة $m v_0$ التى قذفت بها الجلة ، تمّ استخراج بعض المعطيات أثناء لحظة الرمي:

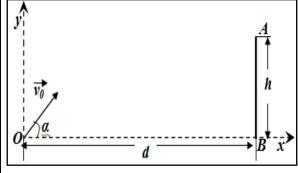

قذفت الجلة من النقطة A التي توجد على ارتفاع $h_{
m A}$ =2,00 m قذفت الجلة من النقطة Aالأرض وبالسرعة $\overrightarrow{v_0}$ التي تشكل الزاوية α =45 مع الخط الأفقى الشكل ندرس حركة الجلة في المعلم المتعامد $(0;\vec{1}\,;\,\vec{k}\,)$ ونختار اللحظة البدئية هي اللحظة التي يتم فيها قذف الجلة من النقطة A اصلا للتواريخ t=0.

- دد المعادلتين الزمنيتين $X=\mathrm{f}(\mathsf{t})$ و $Z=\mathrm{h}(\mathsf{t})$ المميزتين لحركة الجلة $Z=\mathrm{h}(\mathsf{t})$ في المعلم المختار،
 - $v_0 \cdot g \cdot \alpha \cdot h_A$ بدلالة المقادير Z = g(x) بدلالة معادلة مسار الجلة Z = g(x) بدلالة المقادير .
 - و ه، أم احسب و g ، α ، h_A يدلالة المقادير v_0 بدلالة البدئية و g ، ثم احسب
 - 4. حدد المدة الزمنية التي تستغرقها الجلة في الهواء.

في لحظة t=0 يقذف لاعب جلة من ارتفاع $OZ_0=h=2m$ ، عن سطح الأرض، بسرعة بدئية $v_0 = 13,7 \mathrm{m.\,s^{-1}}$ ، متجهتها تكون زاوية

 $\alpha = (\overrightarrow{ox}, \overrightarrow{v_0}) = 35^{\circ}$

- 1. بتطبيق القانون الثاني لنيوتن على القذيفة في المعلم المبيّن على الشكل حدد، المعادلات التفاضلية للحركة و المعادلات الزمنية للحركة.
 - Z = f(x) . اكتب معادلة المسار
 - 3. حدد إحداثيات M نقطة سقوط القذيفة. وما هي سرعتها عند M?

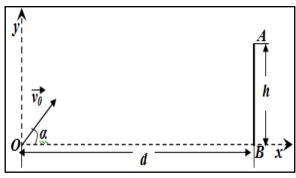


 $d = x_c = 21,51 \text{ m}$

لتنفيذ مخالفة خلال مباراة في كرة القدم، وضع اللاعب الكرة في النقطة () مكان وقوع الخطأ (نعتبر الكرة نقطية) على بعد من خط المرمى، حيث ارتفاع العارضة الأفقية h=AB=2,44~m يقذف اللاعب الكرة بسرعة بدئية $\overline{
m v}_0$ تكون d=25~m $lpha=30^\circ$ اتجاهها مع الأفقى زاوية

> لدرسة طبيعة حركة الكرة في المعلم $(\overrightarrow{ox}, \overrightarrow{oy})$ نأخذ لحظة القذف اصل التواريخ t=0.

- y=f(x) اكتب معادلة المسار y=f(x)
- ر. كم يجب أن تكون قيمة $\overline{\mathrm{v}_0}$ حتى يسجل الهدف مماسيا للعار ضة الأفقية2(النقطة A)؟
- \hat{S} ما هي المدة الزمنية المستغرقة لتصل الكرة الى النقطة \hat{A} وما هي قيمة
 - 4. كم يجب أن تكون قيمة السرعة $\overline{v_0}$ حتى يسجل الهدف مماسيا لخط المرمى (النقطة B)؟



 h_0

قام لاعب في مقابلة لكرة السلة، بتسديد الكرة نحو السلة من نقطة A منطبقة على مركز الكرة الموجود على ارتفاع $h_0=2,10~\mathrm{m}$ من سطح الأرض بسرعة بدئية $m c_0 = 8 \; m.s^{-1}$ يكون اتجاهها زاوية m pprox = 0 مع الأفقي، $(x_C = 4,50 \text{ m}, z_C)$ الذي احداثياه: G بمركز السلة في المعلم الأرضي $(\overrightarrow{OX}, \overrightarrow{OZ})$ الذي نعتبره غاليليا.

1. ادرس حركة مركز قصور الكرة في المعلم السابق نعتبر اصل التواريخ لحظة تسديد الكرة

- 2. احسب z_C
- $v_{\rm C}$ عبر مركز قصور الكرة مركز السلة بسرعة $\overline{v_{\rm C}}$ ، التي يشكل اتجاهها مع الأفقي زاوية eta. استنتج قيمتي كل من $v_{\rm C}$ و eta.

