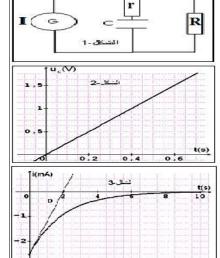

سلسلة تمارين تنائى القطب RC

ينبض قلب الانسان حوالي100000 نبضة في اليوم بايقاع 60الي 80 دقة في الدقيقة وذلك تحت تاثير العقدة الجيبية التي تلعب دور المهيج . في حالة قصور هذه العقدة , تمكن الجراحة من زرع مهيج اصطناعي , و هو عبارة عن تركيب الكتروني نماثله بدارة كهربائية مكونة من عمود خاص مرتبط بموصل اومي مقاومته r مهملة ومكثف سعتهC =470nF وموصل اومي مقاومته R .عندما يوجد قاطع التيار في الموضع 1 يشحن المكثف لحظيا ثم يعود قاطع التيار الى الموضع 2 حيث يفرغ المكثف تدريجيا الى ان ياخذ التوتر بين مربطيه قيمة حدية u₁=E/e مع (lne=1). في هذه اللحظة يرسل المكثف اشارة كهربائية الى القلب الذي ينجز نبضة ثم يعود قاطع التيار الى الموضع 1 ليشحن المكثف من جديد يمثل الشكل تغيرات التوتر بين مربطى المكثف بدلالة الزمن.

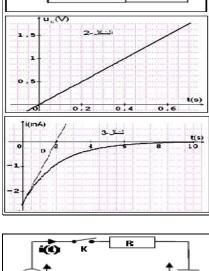
1-شحن المكثف

- 1-1- بماذا يمكن تفسير شحن المكثف لحظيا عند وضع قاطع التيار في الموضع 1.
 - . u_c اين يجب ربط الهيكل والمدخل Y لكاشف التذبذب لمعاينة التوتر u_c
 - 1-3- بين على المنحني الاجزاء الممثلة لشحن المكثف.
- 1-4- ما قيمة شدة التيار المار في الدارة في اللحظة التي يصبح فيها المكثف مشحونا.
 - 1-5- حدد مبيانيا القوة الكهر محركة للعمود .
 - 2- تفريغ المكثف.
 - 2-1- اعتمادا على الاصطلاح الموضح على الشكل1:
 - 2-1-1- حدد اشارة شدة تيار تفريغ المكثف.
 - 2-1-2- اثبت المعادلة التفاضلية التي يخضع لها التوتر uc .
 - 2-2- استنتج صيغة الثابتة au وبين ان وحدتها الزمن.
 - au2-د مدد مبيانيا قيمة ثابتة الزمن au
 - 2-4- استنتج قيمة المقاومة R.
 - 3-علاقة التفريغ بنبضات القلب:
 - 1-3 عند اللحظة t_1 (انظر الشكل2) يرسل المكثف اشارة كهربائية للقلب ويكون المكثف لحظتها غير مفرغ كليا للعتمادا على قيمة
 - $_{
 m E}$ التوتر $_{
 m u_c}$ في هذه اللحظة $_{
 m c}$ حدد قيمة القوة الكهر محركة للعمود
 - $au=t_1$ بين ان بين ان , $u_c=Ee^{-t/ au}$ بين ان المعادلة التفاضلية . 2-3
 - Δt الفاصلة بين إشار تين كهر بائيتين Δt الفاصلة بين إشار تين كهر بائيتين
 - 3-4- استنتج عدد النبضات خلال دقيقة واحدة

t(s)


ننجز التركيب الممثل في الشكل 1 و الذي يتكون

من مولد مؤمثل للتيار و مكثف سعته ${
m C}$ و


موصل اومی مقاومته R و موصل اومی مقاومته r

قاطع التيار K ذي موضعيين

- 1- نضع قاطع التيار في الموضع رقم 1 عند لحظة t=0 فيمر في الدارة تيار كهربائي شدته I=2,5mA نمثل في الشكل 2 تغيرات توتر المكثف بدلالة الزمن
 - الزمن $U_{\rm C}$ بدلالة الزمن $U_{\rm C}$ بدلالة الزمن
 - 1-2- حدد قيمة سعة المكثف
 - 1-3- عند اللحظة t=1s حدد : الطاقة المخزونة بالمكثف و الطاقة التي يبددها الموصل الاومي الى طاقة حرارية
- 4-1- علما ان التوتر القصوي الذي يتحمله المكثف هو $U_{
 m max}$ -40V، حدد في اي لحظة سيتلف المكثف عند $m U_{C}$ =20V نؤرجح قاطع التيار الى الموضع $_{2}$ عند لحظة نعتبر ها اصلا للتواريخ يعطي منحنى $_{2}$
 - الشكل 3 تغيرات شدة التيار بدلالة الزمن خلال عملية التفريغ
 - 2-1- حدد المعادلة التفاضلية التي يحققها شدة التيار الكهربائي
 - au و A محدد تعبیر التابثتین A و $i(t)=A.\exp(-t/ au)$
 - 2-3- بطريقتين حدد قيمة R مقاومة الموصل الاومي

- $E{=}5V$ نركب مكثفا سعته C مفرغ بدئيا مع موصل أومي مقاومته $R{=}10$ و مولد قوته الكهر محركة و قاطع التيار K. عند لحظة t=0 نغلق K و نعاين بواسطة راسم تنبذب ذاكر اتى، التوتر $u_{c}(t)$ بين مربطي المكثف ونحصل على المنحى الممثل جانبه.
 - - \mathbf{v}_{c} و \mathbf{v}_{c} . اوجد تعبير \mathbf{A}_{c} و \mathbf{v}_{c} . \mathbf{u}_{c}
 - $t=5\tau$ ما قيمة التوتر بين مربطي المكثف في عن اللحظة $t=5\tau$ ماذا تستنتج t=5
 - 4- لتكن $t_{1/2}$ اللحظة التي يصل فيها التوتر $u_{
 m c}(t)$ إلى نصف قيمته القصوية . عين مبيانيا قيمة $t_{1/2}$ وبين
 - أن. t_{1/2}=τ. ln 2
 - . سعة المكثف \mathbf{C} عيمة \mathbf{C} عيمة عيمة $\mathbf{u}_{\mathrm{c}}(t_{1/2})$ عيمة المكثف.

