تمرین 1

I ـ شحن المكثف

، I=0.33mA يعطى المولد للدارة تيارا شدته

. u_c يعطي المبيان جانبه تغيرات شحنة المكثف q بدلالة التوتر بين مربطيه

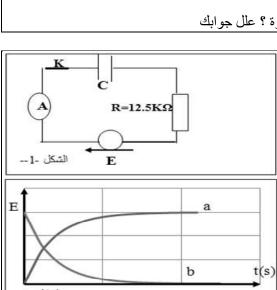
- c أوجد من المبيان قيمة سعة المكثف c
- يشير الصانع قيمة سعة المكثف هي c=1mF بدقة 20%.
 - هل القيمة المحصل عليها تتوافق مع ما أعطاه الصانع؟
- 7,5s وهذا عارن بين الطاقة المخزنة من طرف المكثف خلال نفس المدة

I' = 0,165mA و I = 0,330mA عندما نشحنه بتیار شدته

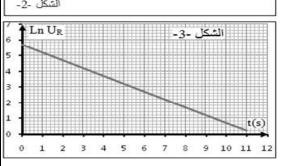
II- تفريغ المكثف

 $u=u_0=6,4V$ عندما يصل التوتر بين مربطي المكثف إلى القيمة نؤرجح قاطع التيار من الموضع 2 إلى 1 نأخذ هذه اللحظة كأصل التواريخ .

1- أحسب الطاقة المخزنة في المكثف خلال الشحن.

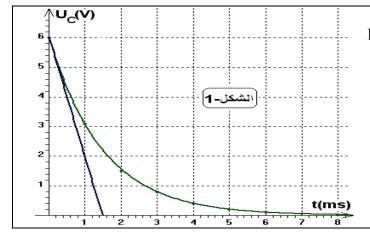

.
$$\frac{du_c}{dt} + \frac{1}{2RC}u_c = 0$$
 أوجد المعادلة التفاضلية التالية -2

- . حل المعادلة التفاضلية . $U_C=Ee^{-t/ au}$ بين ان $U_C=Ee^{-t/ au}$
- t= au المكثف عند t= au ؟
- 5- نريد تفريغ المكثف بسرعة ، أيجب علينا إستخدام موصل اومي مقاومته كبيرة أو صغيرة ؟ علل جوابك



نعتبر الدارة الممثلة في الشكل جانبه:

- $U_{\rm C}$ مثل على الدارة التوتر بين مربطي الموصل الاومي $U_{\rm R}$ وبين مربطي المكثف $U_{\rm R}$. بواسطة راسم التذبذب نعاين التوتر بين مربطي الموصل الاومي $U_{\rm R}$ وبين مربطي المكثف $U_{\rm C}$
 - أ- اضف الى الدارة راسم التذبذب.
 - ب- حدد معللا جوابك على (الشكل -2-) أي من المنحنيين a أم b أم مثل تغيرات b بدلالة الزمن $D_{\rm R}$
 - $i = \frac{E}{R} e^{-\frac{t}{\tau}}$ يعبر عن تغير شدة التيار في الدارة بالمعادلة 3.
 - b و a بين بدون حساب كيفية تحديد ثابتة الزمن τ من أحد المبيانين a
 - ب- أكتب في النظام الدائم تعبير U_R , U_C و U_R (الطاقة المخزنة في المكثف) بدلالة مميزات عناصر الدارة
 - 4. نمثل في الشكل 3 تغيرات U_R بدلالة الزمن
 - ُ أكتب تعبير In U_R بدلالة الزمن
 - E باستنتج من منحنى الشكل -3 قيمة ثابتة الزمن au والقوة الكهر محركة للمولد
 - ت- احسب قيمة C سعة المكثف، واستنتج الطاقة المخزنة فيه في النظام الدائم
 - ث- احسب اقصى شدة للتيار أثناء عملية الشحن
 - 99% جـ عين على المبيان (الشكل-3-) اللحظة التي تصل فيها عملية الشحن الى واستنتج قيمة U_R عند نفس اللحظة


q(mC)

ننجز دارة كهربائية و التي تتكون من مكثف سعته $C{=}0,1\mu F$ مشحون بدئيا بشحنة كهربائية مقدار ها $q{=}0,6\times 10^{-6}C$ ، وموصل أومي مقاومته $q{=}0,6\times 10^{-6}C$ و قاطع التيار $q{=}0,6\times 10^{-6}C$

في اللحظة t=0 نغلق قاطع التيار.

- 1- ارسم الدارة الكهربائية.
- 2- مثل على على الدارة منحى مرور التيار الكهربائي.
- 2- سن على على الماره المعلى مروور الميار المعادلة التفاضلية التي . 3- بالاعتماد على قانون اضافيات التوترات أوجد المعادلة التفاضلية التي يحققها التوتر U.
- 4- حل المعادلة التفاضلية السابقة يكتب على الشكل: $U_{\rm C}=a{\rm e}^{\rm bt}$ حيث a و d ثابتتين ، حدد تعبير و قيمة كل منهما.
 - 5- حدد قيمة سعة المكثف.

